6.5k views
1 vote
10 points!!! please help :(

10 points!!! please help :(-example-1
User Jasekp
by
7.9k points

1 Answer

3 votes
To complete the identity, we need these fundamental identities:


1)\displaystyle{sec(x)=(1)/(cos(x))


2) cos(x-y)=cos(x)cos(y)+sin(x)sin(y)


\displaystyle{csc(x)= (1)/(sin(x))


Thus, by identity 1 we have:


\displaystyle{ sec( ( \pi )/(2)-\theta )= (1)/(cos(( \pi )/(2)-\theta))

by identity :


\displaystyle{cos(( \pi )/(2)-\theta)=cos(( \pi )/(2))cos(\theta)+sin(( \pi )/(2))sin(\theta)

recall the values :


\displaystyle{ sin(( \pi )/(2))^R=sin(90^o)=1\\\\


\displaystyle{ cos(( \pi )/(2))^R=cos(90^o)=0,


so:


cos(( \pi )/(2))cos(\theta)+sin(( \pi )/(2))sin(\theta)=0+sin(\theta)=sin(\theta)


Putting all these together, we have:



\displaystyle{ sec( ( \pi )/(2)-\theta )= (1)/(cos(( \pi )/(2)-\theta))= (1)/(cos(( \pi )/(2))cos(\theta)+sin(( \pi )/(2))sin(\theta))= (1)/(sin(\theta))}

which is equal to
csc(\theta), by identity 3


Answer: D
User Vadim Rybak
by
8.0k points