140k views
0 votes
Really need help with this, am I on the right track or no?

Really need help with this, am I on the right track or no?-example-1

1 Answer

3 votes

\bf a)\\\\ V=\stackrel{\textit{volume of cone}}{\cfrac{\pi r^2\cdot \boxed{3r}}{3}}+\stackrel{\textit{volume of hemisphere}}{\cfrac{2\pi r^3}{3}}\implies V=\cfrac{3\pi r^3}{3}+\cfrac{2\pi r^3}{3} \\\\\\V=\cfrac{5\pi r^3}{3} \\\\\\ S=\stackrel{\textit{lateral area of cone}}{\pi r\sqrt{r^2+\boxed{3^2r^2}}}+\stackrel{\textit{area of hemisphere}}{2\pi r^2}\implies S=\pi r√(r^2+9r^2)+2\pi r^2


\bf S=\pi r√(10r^2)+2\pi r^2\implies S=\pi r^2√(10)+2\pi r^2 \\\\\\ S=\pi r^2(2+√(10))\\\\\\ b)\\\\ \stackrel{A=kS}{A=k\cdot \pi r^2(2+√(10))}\qquad \qquad \stackrel{C=kV}{C=k\cdot \cfrac{5\pi r^3}{3}}


\bf c)\\\\ A\ge C\implies k\cdot \pi r^2(2+√(10))\ge k\cdot \cfrac{5\pi r^3}{3} \\\\\\ k\pi r^2(2+√(10))\ge \cfrac{5k\pi r^2r}{3}\implies \cfrac{\underline{k\pi r^2}(2+√(10))}{\underline{k\pi r^2}}\ge\cfrac{5r}{3} \\\\\\ 3(2+√(10))\ge 5r\implies 6+3√(10)\ge 5r\implies \cfrac{6+3√(10)}{5}\ge r
User Slant
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories