4.6k views
5 votes
ABCD is a parallelogram. A is the point (2,5), B is the point (8,8) and the diagonals intersect at (3.5, 2.5). What are the coordinates of C and D? How do I work this out?

User Fareanor
by
7.8k points

1 Answer

4 votes
check the picture below.

so, we know that 3.5, 2.5 is the midpoint of each diagonal, keeping in mind that, in a parallelogram, the diagonals bisect each other, namely, they cut each other in two equal halves.


\bf \textit{middle point of 2 points }\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) A&({{ 2}}\quad ,&{{ 5}})\quad % (c,d) C&({{ x}}\quad ,&{{ y}}) \end{array}\qquad % coordinates of midpoint \left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)


\bf \left( \cfrac{x+2}{2}~,~\cfrac{y+5}{2} \right)=\stackrel{midpoint}{(3.5,2.5)}\implies \begin{cases} \cfrac{x+2}{2}=3.5\\\\ x+2=7\\ \boxed{x=5}\\ ----------\\ \cfrac{y+5}{2}=2.5\\\\ y+5=5\\ \boxed{y=0} \end{cases}


\bf -------------------------------\\\\ \textit{middle point of 2 points }\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) B&({{ 8}}\quad ,&{{ 8}})\quad % (c,d) D&({{ x}}\quad ,&{{ y}}) \end{array}\qquad % coordinates of midpoint \left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)


\bf \left( \cfrac{x+8}{2}~,~\cfrac{y+8}{2} \right)=\stackrel{midpoint}{(3.5,2.5)}\implies \begin{cases} \cfrac{x+8}{2}=3.5\\\\ x+8=7\\ \boxed{x=-1}\\ ----------\\ \cfrac{y+8}{2}=2.5\\\\ y+8=5\\ \boxed{y=-3} \end{cases}
ABCD is a parallelogram. A is the point (2,5), B is the point (8,8) and the diagonals-example-1
User AridTag
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories