Answer:
![\angle B=79^(\circ).](https://img.qammunity.org/2022/formulas/mathematics/high-school/lyp77ac04fodrd8du3ba98tijb9da500a8.png)
Explanation:
When two lines cross each other , then the opposite angles are known as vertical angles.
Vertical angles are equal.
Here, ∠A and ∠B are vertical angles.
So, ∠A = ∠B
If
and
![\angle B=(5x+4)^(\circ)](https://img.qammunity.org/2022/formulas/mathematics/high-school/25actd2ek6du3xv8297r01865fuzdish0j.png)
Then ,
![6x-11=5x+4](https://img.qammunity.org/2022/formulas/mathematics/high-school/m2338545q0y1cuvg4uvf5tet8yr9ju7bd1.png)
Subtract 5x from both sides, we get
![x-11=4](https://img.qammunity.org/2022/formulas/mathematics/high-school/pdxzyc1wf2s5eotetzkiczjg7t6i9xptaj.png)
Add 11 on both sides, we get
![x=15](https://img.qammunity.org/2022/formulas/mathematics/high-school/772soggszwrdwst60x4slafs3txdxb7skt.png)
Now ,
![\angle B=(5(15)+4)^(\circ)=79^(\circ)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4y2dsvmolcnpszb7ia5kw8xjgcnniqq8ko.png)
Hence, the measure of
![\angle B=79^(\circ).](https://img.qammunity.org/2022/formulas/mathematics/high-school/lyp77ac04fodrd8du3ba98tijb9da500a8.png)