Answer:
- (-1, -5), (-1/2, -3), (-1, -9)
Explanation:
The function in vertex form is:
- f (x) = a(x - h)² + k, where (h, k) is the vertex
- f(x) = (x - 1)² - 3
i) y = f(x) - 2 = (x - 1)² - 3 - 2 = (x - 1)² - 5 ⇒ h = 1, k = -5
Minimum point:
ii) y = f(2x) = (2x - 1)² - 3 = 4(x - 1/2)² - 3 ⇒ h = 1/2, k = -3
Minimum point:
iii) y = 3f(x) = 3((x - 1)² - 3) = 3(x - 1)² - 9 ⇒ h = 1, k = -9
Minimum point: