175k views
4 votes
What is the perimeter, in terms of x, of the triangle shown here?

(7x2 - 12)
(-5x + 30)
(3x2 + 4x)

1 Answer

10 votes

Answer:

The perimeter of triangle is:
\mathbf{10x^2-x+18}

Explanation:

We need to find perimeter, in terms of x, of the triangle shown here.

The length of side 1:
(7x^2 - 12)

The length of side 2:
(-5x + 30)

The length of side 3:
(3x^2 + 4x)

The formula used to find perimeter of triangle is:
Perimeter\: of\: triangle=Sum\:of\:length\:of\:all\:sides

Putting values and finding perimeter:


Perimeter\: of\: triangle=Sum\:of\:length\:of\:all\:sides\\Perimeter\: of\: triangle=(7x^2 - 12)+(-5x + 30)+(3x^2 + 4x)\\Perimeter\: of\: triangle= 7x^2-12-5x+30+3x^2+4x\\Perimeter\: of\: triangle=7x^2+3x^2-5x+4x-12+30\\Perimeter\: of\: triangle=10x^2-x+18

So, The perimeter of triangle is:
\mathbf{10x^2-x+18}

User Kim Ras
by
4.7k points