Answer:
Question 5
We get n=42.15 and o=71.5
Question 6
We get e=15.32 and t=17.88
Explanation:
Question 5
The triangles are similar.
So, the ratio of corresponding sides will be similar.
![(53)/(n)=(88)/(70)=(90)/(o)](https://img.qammunity.org/2022/formulas/mathematics/college/3sg4yf0lf3r6vxl8l8bspf8vmn5qy3mmz5.png)
First we will solve
to find value of n.
Cross multiply
![53*70=88*n\\n=(3710)/(88)\\n=42.15\\](https://img.qammunity.org/2022/formulas/mathematics/college/i5vaf3pzb0bi8e3ufa7tyj72ep8xykpc0w.png)
Now, we will solve
to find value of o
![88*o = 90*70\\o=(6300)/(88)\\o=71.5\\](https://img.qammunity.org/2022/formulas/mathematics/college/l5378mn3np16o8d1id4tkfgf516gj1f9b3.png)
So, We get n=42.15 and o=71.5
Question 6
The triangles are similar.
So, the ratio of corresponding sides will be similar.
![(9.6)/(e)=(5.7)/(9.1)=(11.2)/(t)](https://img.qammunity.org/2022/formulas/mathematics/college/7p9xd5b8mk8fytfaydogg7ll0oh8z97g2u.png)
First we will solve
to find value of n.
Cross multiply
![9.1*9.6=e*5.7\\e=(87.36)/(5.7)\\e=15.32\\](https://img.qammunity.org/2022/formulas/mathematics/college/aovekoajw33o4kg2vce2eydy5tnj4c8ga4.png)
Now, we will solve
to find value of o
![5.7*t = 11.2*9.1\\t=(101.92)/(5.7)\\t=17.88\\](https://img.qammunity.org/2022/formulas/mathematics/college/oiig8vm0t77bj8gbpek5j5r5zcc4d9rlhd.png)
So, We get e=15.32 and t=17.88