113k views
0 votes
The function g(x) = –3x2 – 36x – 60 written in vertex form is g(x) = –3(x + 6)2 + 48. Which is one of the transformations applied to the graph of f(x) = x2 to change it into the graph of g(x) = –3x2 – 36x – 60? The graph of f(x) = x2 is made narrower. The graph of f(x) = x2 is shifted right 6 units. The graph of f(x) = x2 is shifted down 48 units. The graph of f(x) = x2 is reflected over the y-axis.

User AvinashK
by
8.2k points

1 Answer

3 votes
the vertex form of the function gives the vertex as (-6,48). The vertex of f(x)=x^2 is (0,0) so from this information, the vertex is moved LEFT 6 and UP 48. This cancels out two options. The coefficient -3 tells us that the graph is flipped or reflected over the x-axis (negative sign flips graph) and that all y-values will be 3 times as large. Larger y-values for the same x inputs makes the graph narrower.
User ItsLex
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.