Final answer:
To determine the percent composition of the hydrocarbon, we first need to calculate the mass of carbon and hydrogen in the sample. From the combustion analysis, we can obtain the masses of CO2 and H2O produced. By comparing the moles of carbon and hydrogen, we can determine the empirical formula. The molecular formula is found by comparing the empirical formula mass with the given molar mass. Hence the correct answer is option B
Step-by-step explanation:
To determine the percent composition of the hydrocarbon, we first need to calculate the mass of carbon and hydrogen in the sample. From the combustion analysis, we know that 0.5008 grams of CO2 is produced. Since the molar mass of CO2 is 44.01 g/mol, this corresponds to 0.0114 moles of CO2. Similarly, we know that 0.1282 grams of H2O is produced. With the molar mass of H2O being 18.02 g/mol, this corresponds to 0.00713 moles of H2O. From these values, we can calculate the moles of carbon and hydrogen:
Moles of carbon = 0.0114 moles CO2 * 1 mole C / 1 mole CO2 = 0.0114 moles C
Moles of hydrogen = 0.00713 moles H2O * 2 moles H / 1 mole H2O = 0.01426 moles H
Now we divide both values by the smallest number of moles, which is 0.0114 moles:
Moles of carbon = 0.0114 moles C / 0.0114 moles C = 1 mole C
Moles of hydrogen = 0.01426 moles H / 0.0114 moles C = 1.25 moles H
The empirical formula therefore is CH. To find the molecular formula, we need to compare the empirical formula mass (14.03 g/mol) with the given molar mass (106 g/mol). The ratio is 106 g/mol / 14.03 g/mol = 7.56. This means that the molecular formula is 7.56 times the empirical formula, giving us C7.56H7.56. To simplify, we round this to C8H8. Therefore, the molecular formula of the hydrocarbon is C8H8.
Hence the correct answer is option B