108k views
1 vote
Find the exact value of tan75

This is a question from sum and differences of trigs so it must include that. I've tried multiple things and nothing has given me one of the options for answers.

User Arendjr
by
7.1k points

1 Answer

2 votes

\bf tan({{ \alpha}} + {{ \beta}}) = \cfrac{tan({{ \alpha}})+ tan({{ \beta}})}{1- tan({{ \alpha}})tan({{ \beta}})}\\\\ -------------------------------\\\\ tan(75^o)\implies tan(45^o+30^o)=\cfrac{tan(45^o)+tan(30^o)}{1-tan(45^o)tan(30^o)} \\\\\\ tan(45^o+30^o)=\cfrac{(sin(45^o))/(cos(45^o))+(sin(30^o))/(cos(30^o))}{1-(sin(45^o))/(cos(45^o))\cdot (sin(30^o))/(cos(30^o))}


\bf tan(45^o+30^o)=\cfrac{((√(2))/(2))/((√(2))/(2))+((1)/(2))/((√(3))/(2))}{1-((√(2))/(2))/((√(2))/(2))\cdot ((1)/(2))/((√(3))/(2))} \implies tan(45^o+30^o)=\cfrac{1+(1)/(√(3))}{1-1\cdot (1)/(√(3))}


\bf tan(45^o+30^o)=\cfrac{(√(3)+1)/(√(3))}{1-(1)/(√(3))}\implies tan(45^o+30^o)=\cfrac{(√(3)+1)/(√(3))}{(√(3)-1)/(√(3))} \\\\\\ tan(45^o+30^o)=\cfrac{√(3)+1}{√(3)}\cdot \cfrac{√(3)}{√(3)-1}\implies tan(45^o+30^o)=\cfrac{√(3)+1}{√(3)-1}


so... let's rationalize the denominator.. now, the denominator is √(3) - 1, so, we'll use her conjugate, √(3) + 1, and multiply top and bottom by it, so we end up with a "difference of squares" at the bottom, so, let's do so.


\bf \textit{difference of squares} \\ \quad \\ (a-b)(a+b) = a^2-b^2\qquad \qquad a^2-b^2 = (a-b)(a+b)\\\\ -------------------------------\\\\


\bf \cfrac{√(3)+1}{√(3)-1}\cdot \cfrac{√(3)+1}{√(3)+1}\implies \cfrac{(√(3)+1)(√(3)+1)}{(√(3)-1)(√(3)+1)}\implies \cfrac{(√(3)+1)^2}{(√(3))^2-(1)^2} \\\\\\ \cfrac{(√(3)+1)^2}{3-1}\implies \cfrac{(√(3))^2+2√(3)+1^2}{2}\implies \cfrac{3+2√(3)+1}{2} \\\\\\ \cfrac{4+2√(3)}{2}\implies \cfrac{\underline{2}(2+√(3))}{\underline{2}}\implies 2+√(3)
User Patrick Stalph
by
7.3k points