49.8k views
1 vote
How do I find the terms?

How do I find the terms?-example-1

1 Answer

4 votes
A(n+1) = A(n)+4 <--- is a way to say, to get the next term, ADD 4 to the current one, whist A(1) = -2, is a way to say, the first term is -2.


\bf n^(th)\textit{ term of an arithmetic sequence}\\\\ a_n=a_1+(n-1)d\qquad \begin{cases} n=n^(th)\ term\\ a_1=\textit{first term's value}\\ d=\textit{common difference}\\ ----------\\ d=4\\ a_1=-2\end{cases} \\\\\\ \begin{array}{llll} term&amp;value\\ ------&amp;------\\ 2&amp;a_2=-2+(2-1)4\\ 3&amp;a_3=-2+(3-1)4\\ 4&amp;a_4=-2+(4-1)4\\ 5&amp;a_5=-2+(5-1)4 \end{array}

----------------------------------------------------------------------------------------

A(n)= 1/4 * A(n) is just a way of saying, you get the next term by multiplying the current one by 1/4, and A(1) = 8, simply means the first term's value is 8.


\bf n^(th)\textit{ term of a geometric sequence}\\\\ a_n=a_1\cdot r^(n-1)\qquad \begin{cases} n=n^(th)\ term\\ a_1=\textit{first term's value}\\ r=\textit{common ratio}\\ ----------\\ r=(1)/(4)\\ a_1=8 \end{cases} \\\\\\ \begin{array}{llll} term&amp;value\\ ------&amp;------\\ 2&amp;a_2=8\left( (1)/(4) \right)^(2-1)\\\\ 3&amp;a_3=8\left( (1)/(4) \right)^(3-1)\\\\ 4&amp;a_4=8\left( (1)/(4) \right)^(4-1)\\\\ 5&amp;a_5=8\left( (1)/(4) \right)^(5-1)\\ \end{array}
User Ianribas
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories