92.7k views
0 votes
Three collinear points on the coordinate plane are R(x, y), S(x+8h, y+8k), and P(x+6h, y+6k).

Part A: Determine the value of RP/SP
Part B: Determine the value of RP/RS

User Oreh
by
7.2k points

2 Answers

3 votes
USE THE DISTANCE FORMULA FOR EACH SEGMENT
User Martin Milichovsky
by
7.3k points
3 votes

Answer:

A.
(RP)/(SP)=3

B.
(RP)/(RS)=(3)/(4)

Explanation:

We are given that three collinear points on the coordinate plane are


R(x,y),S(x+8h,y+8k) and P(x+6h,y+6k)

A.We have to find the value of
(RP)/(SP)

Distance formula :
√((x_2-x_1)^2+(y_2-y_1)^2)

Using this formula and substitute the values then we get

RP=
√((x+6h-x)^2+(y+6k-y)^2)

RP=
√(36h^2+36 k^2)

RP=
6√(h^2+k^2)

SP=
√((x+6h-x-8h)^2+(y+6k-y-8k)^2)

SP=
√(4h^2+4k^2)

SP=
√(4(h^2+k^2))

SP=
2√(h^2+k^2)


(RP)/(SP)=(6√(h^2+k^2))/(2√(h^2+k^2))


(RP)/(SP)=3

B.We have to determine the value of
(RP)/(RS)

RS=
√((x+8h-x)^2+(y+8k-y)^2)

RS=
√(64h^2+64k^2)

RS=
√(64(h^2+k^2))

RS=
8√(h^2+k^2)


(RP)/(RS)=(6√(h^2+k^2))/(8√(h^2+k^2))


(RP)/(RS)=(3)/(4)

User Christophe P
by
8.8k points