104k views
1 vote
Factor completely
4(x+1)^2/3 + 12(x+1)^-1/3

User Ujesh
by
8.8k points

2 Answers

6 votes
4(x+1)^2/3 + 12(x+1)^-1/2

4(x+1)^2/3 + 12/(x+1)^1/3

[4(x+1) + 12 ]/(x+1)^1/3

(4x+16) / (x+1)^1/3
User Tchypp
by
7.8k points
2 votes

\bf a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^( n)} \qquad \qquad \sqrt[{ m}]{a^( n)}\implies a^{\frac{{ n}}{{ m}}}\\\\ \left.\qquad \qquad \right.\textit{negative exponents}\\\\ a^{-{ n}} \implies \cfrac{1}{a^( n)} \qquad \qquad \cfrac{1}{a^( n)}\implies a^{-{ n}} \qquad \qquad a^{{{ n}}}\implies \cfrac{1}{a^{-{{ n}}}} \\\\ -------------------------------\\\\ %4(x+1)^2/3 + 12(x+1)^-1/3 4(x+1)^{(2)/(3)}+12(x+1)^{-(1)/(3)}\implies 4(x+1)^{(2)/(3)}+12\cfrac{1}{(x+1)^{(1)/(3)}} \\\\\\


\bf 4(x+1)^{(2)/(3)}+\cfrac{12}{(x+1)^{(1)/(3)}}\impliedby \textit{so, our LCD is }(x+1)^{(1)/(3)} \\\\\\ \cfrac{4(x+1)^{(2)/(3)}\cdot (x+1)^{(1)/(3)}+12}{(x+1)^{(1)/(3)}}\implies \cfrac{4(x+1)^{(2)/(3)+(1)/(3)}+12}{(x+1)^{(1)/(3)}} \\\\\\ \cfrac{4(x+1)^{(3)/(3)}+12}{(x+1)^{(1)/(3)}}\implies \cfrac{4(x+1)+12}{(x+1)^{(1)/(3)}}\implies \cfrac{4x+4+12}{(x+1)^{(1)/(3)}} \\\\\\ \cfrac{4x+16}{(x+1)^{(1)/(3)}}\implies \cfrac{4(x+4)}{\sqrt[3]{x+1}}
User Lbarqueira
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories