50.6k views
5 votes
"(b) use part (a) to find a power series for f(x) = 1 (4 + x)3 ."

1 Answer

3 votes
Assuming


f(x)=\frac1{(4+x)^3}

Recall that for
|x|<1,


\displaystyle\sum_(n\ge0)x^n=\frac1{1-x}

Denote the above by
s(x). Then


s'(x)=\displaystyle\sum_(n\ge1)nx^(n-1)=\frac1{(1-x)^2}

s''(x)=\displaystyle\sum_(n\ge2)n(n-1)x^(n-2)=\frac2{(1-x)^3}

Now,


\frac1{(4+x)^3}=\frac1{4^3}\frac1{\left(1-\left(-\frac x4\right)\right)^3}=\frac1{2^7}\frac2{\left(1-\left(-\frac x4\right)\right)^3}

which means we have


f(x)=\frac1{2^7}s''(x)=\frac1{128}\displaystyle\sum_(n\ge2)n(n-1)\left(-\frac x4\right)^(n-2)

which is valid for
\left|-\frac x4\right|<1, or
|x|<4.
User RPT
by
7.9k points

No related questions found