324,093 views
38 votes
38 votes
Find the value of the derivative (if it exists) at each indicated extremum.

Find the value of the derivative (if it exists) at each indicated extremum.-example-1
User Hooman Ahmadi
by
2.7k points

1 Answer

15 votes
15 votes

Let's begin with the derivate


\begin{gathered} f(x)=-3x√(x+1) \\ f^(\prime)(x)=-3\left((d)/(dx)\left(x\right)√(x+1)+(d)/(dx)\left(√(x+1)\right)x\right) \\ f^(\prime)(x)=-3\left(1\cdot√(x+1)+(1)/(2√(x+1))x\right) \end{gathered}

Simplify


f^(\prime)(x)=-(3\left(3x+2\right))/(2√(x+1))

Now let's replace the first point x=-1


f^(\prime)(-1)=-(3(3(-1)+2))/(2√((-1)+1))

Solving


\begin{gathered} f^(\prime)(-1)=-(3(-3+2))/(2√(0)) \\ \\ f^(\prime)(-1)=-(3(-1))/(2\cdot0) \\ \\ f^(\prime)(-1)=-(-3)/(0) \end{gathered}

The answer shows us that the derivate at this point is Undefined

For x = -2/3


\begin{gathered} f^(\prime)(-(2)/(3))=-\frac{3(3(-(2)/(3))+2)}{2\sqrt{(-(2)/(3))+1}} \\ \\ f^(\prime)(-(2)/(3))=-\frac{3(-2+2)}{2\sqrt{(1)/(3)}} \\ \\ f^(\prime)(-(2)/(3))=-\frac{3(0)}{2\sqrt{(1)/(3)}} \\ \\ f^(\prime)(-(2)/(3))=-\frac{0}{2\sqrt{(1)/(3)}}=0 \end{gathered}

At this point, the derivate is 0

User Ashely
by
3.0k points