45.1k views
3 votes
What is the distance between the two points?

What is the distance between the two points?-example-1
User Ardal
by
7.6k points

2 Answers

2 votes
If you have 2 pairs such that A(x₁ , y₁) and B(x₂ , y₂). , the distance is:

AB = √[(x₂ - x₁)² + (y₂ - y₁)²]

A(1/8 , 9/5) and B(3/8 , - 4/5)

Plug in the related value:

AB = √[(3/8 - 1/8)² + ( - 4/5 - 9/5)²] = √(2729/400) (ALREADY SIMPLIFIED)
AB = distance = 2.61

User Rosnk
by
8.1k points
3 votes

\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ (1)/(8)}}\quad ,&{{-(9)/(5)}})\quad % (c,d) &({{ (3)/(8)}}\quad ,&{{ -(4)/(5)}}) \end{array}\qquad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}


\bf d=\sqrt{\left[ (3)/(8)-(1)/(8) \right]^2+\left[-(4)/(5)-\left( -(9)/(5) \right) \right]^2}\implies d=\sqrt{\left( (3)/(8)-(1)/(8) \right)^2+\left(-(4)/(5)+(9)/(5) \right)^2} \\\\\\ d=\sqrt{\left( (2)/(8)\right)^2+\left((5)/(5) \right)^2}\implies d=\sqrt{\left( (1)/(4) \right)^2+\left( 1 \right)^2}\implies d=\sqrt{(1^2)/(4^2)+1}


\bf d=\sqrt{(1)/(16)+1}\implies d=\sqrt{\cfrac{17}{16}}\implies d=\cfrac{√(17)}{√(16)}\implies d=\cfrac{√(17)}{4}
User Steve Neal
by
7.1k points