45.1k views
3 votes
What is the distance between the two points?

What is the distance between the two points?-example-1
User Ardal
by
8.2k points

2 Answers

2 votes
If you have 2 pairs such that A(x₁ , y₁) and B(x₂ , y₂). , the distance is:

AB = √[(x₂ - x₁)² + (y₂ - y₁)²]

A(1/8 , 9/5) and B(3/8 , - 4/5)

Plug in the related value:

AB = √[(3/8 - 1/8)² + ( - 4/5 - 9/5)²] = √(2729/400) (ALREADY SIMPLIFIED)
AB = distance = 2.61

User Rosnk
by
8.6k points
3 votes

\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ (1)/(8)}}\quad ,&{{-(9)/(5)}})\quad % (c,d) &({{ (3)/(8)}}\quad ,&{{ -(4)/(5)}}) \end{array}\qquad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}


\bf d=\sqrt{\left[ (3)/(8)-(1)/(8) \right]^2+\left[-(4)/(5)-\left( -(9)/(5) \right) \right]^2}\implies d=\sqrt{\left( (3)/(8)-(1)/(8) \right)^2+\left(-(4)/(5)+(9)/(5) \right)^2} \\\\\\ d=\sqrt{\left( (2)/(8)\right)^2+\left((5)/(5) \right)^2}\implies d=\sqrt{\left( (1)/(4) \right)^2+\left( 1 \right)^2}\implies d=\sqrt{(1^2)/(4^2)+1}


\bf d=\sqrt{(1)/(16)+1}\implies d=\sqrt{\cfrac{17}{16}}\implies d=\cfrac{√(17)}{√(16)}\implies d=\cfrac{√(17)}{4}
User Steve Neal
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories