128k views
2 votes
Find all solutions in the interval [0, 2π). tan x + sec x = 1

User NexusRex
by
8.7k points

1 Answer

2 votes

\bf sin^2(\theta)+cos^2(\theta)=1\implies cos^2(\theta)=1-sin^2(\theta) \\\\\\ cos(\theta)=√(1-sin^2(\theta)) \\\\\\ and\qquad tan(\theta)=\cfrac{sin(\theta)}{cos(\theta)}\qquad sec(\theta)=\cfrac{1}{cos(\theta)}\\\\ -------------------------------\\\\


\bf tan(x)+sec(x)=1\implies \cfrac{sin(x)}{cos(x)}+\cfrac{1}{cos(x)}=1\implies \cfrac{sin(x)+1}{cos(x)}=1 \\\\\\ sin(x)+1=cos(x)\implies sin(x)+1=\boxed{√(1-sin^2(x))} \\\\\\\ [sin(x)+1]^2=[√(1-sin^2(x))]^2 \\\\\\ sin^2(x)+2sin(x)+1^2=1-sin^2(x) \\\\\\ 2sin^2(x)+2sin(x)=0\implies 2sin(x)[sin(x)+1]=0 \\\\\\ \begin{cases} 2sin(x)=0\\ \qquad sin(x)=0\\ \qquad \measuredangle x=0~,~\pi \\ sin(x)+1=0\\ \qquad sin(x)=-1\\ \qquad \measuredangle x=(3\pi )/(2) \end{cases}
User Razvang
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories