51.6k views
2 votes
Use a table of function values to approximate an x-value in which the exponential function exceeds the polynomial function. In your final answer, include the table of function values.

f(x) = 2x
h(x) = x^3 + x + 8

2 Answers

0 votes

f(x) = 2^x; h(x) = x^3 + x + 8

Table

x f(x) = 2^x h(x) = x^3 + x + 8

0 2^0 = 1 0 + 0 + 8 = 8

1 2^1 = 2 1^3 + 1 + 8 = 10

2 2^2 = 4 2^3 + 2 + 8 = 8 + 2 + 8 = 18

3 2^3 = 8 3^3 + 3 + 8 = 27 + 3 + 8 = 38

4 2^2 = 16 4^3 + 4 + 8 = 76

10 2^10 = 1024 10^3 +10 + 8 = 1018

9 2^9 = 512 9^3 + 9 + 8 = 729 + 9 + 8 = 746

Answer: an approximate value of 10

User Ben Botvinick
by
8.1k points
5 votes
f(x)=2ˣ
f(x)
(x,y)
(0,1)
(1,2)
(2,4)
(3,8)
(4,16)
(5,32)
(6,64)
(7,128)
(8,256)
(9,512)
(10,1024)

h(x)
(x,y)
(0,8)
(1,10)
(2,18)
(3,38)
(4,76)
(5,138)
(6,230)
(7,358)
(8,528)
(9,736)
(10,1018)

so somwehre between x=9 and x=10

hmm
f(9.5)=724.007
h(9.5)=874.875

go to 9.75
f(9.75)=944.609
h(9.75)=861.078

up

9.9
f(9.9)=955.426
h(9.9)=988.199
up

9.95
f(9.95)=989.119
h(9.95)=1003.02
up

9.99
f(9.99)=1016.93
h(9.99)=1014.99

a bit down
9.98
f(9.98)=1009.9
h(9.98)=1011.99

a bit up
9.985
f(9.985)=1013.41
h(9.985)=1013.49
pretty close, ya

so about at 9.985=x
if we graphed, we get that x=9.98512070914982..., so we are pretty close
User Keziah
by
8.0k points