Answer:
![\[y=-(4)/(9)x+11\]](https://img.qammunity.org/2018/formulas/mathematics/high-school/k9atxonvh9cs5pxm1ahvjhc5crrbgzx5jd.png)
Explanation:
Equation of the given line is
![\[-9x+4y=8\]](https://img.qammunity.org/2018/formulas/mathematics/high-school/8vuvyofrgrjojig4s63dsd4rrgeryja5rx.png)
Slope of the line =
Slope of the perpendicular line =
Equation of the line perpendicular to the given line is
![\[y=mx+c\]](https://img.qammunity.org/2018/formulas/mathematics/high-school/5t84ewxvccp5nw6e42n54qvyg1v9oz07ir.png)
![\[y=-(4)/(9)x+c\]](https://img.qammunity.org/2018/formulas/mathematics/high-school/8sv6aqyqlsd7ldl4g9xpyouhflqsv9rrjb.png)
But this line passes through (9,7)
Substituting the values in the equation:
![\[7=-4+c\]](https://img.qammunity.org/2018/formulas/mathematics/high-school/tdkf2xfeay9wwy61yemaj12aelxwna4xed.png)
=>
![\[c=7+4=11\]](https://img.qammunity.org/2018/formulas/mathematics/high-school/zll8k7cewihpwke5p6z015jsl8yhp1dkgq.png)
So the overall equation of the parallel line is given by
![\[y=-(4)/(9)x+11\]](https://img.qammunity.org/2018/formulas/mathematics/high-school/k9atxonvh9cs5pxm1ahvjhc5crrbgzx5jd.png)