Let's divide and find the remainder for the following division:
x^4 - 9x^3 - 5x^2 - 3x + 4 by x+3
Step 1: x^3 + (-12x^3 - 5x^2 - 3x + 4)/x + 3
Step 2: (-12x^3 - 5x^2 - 3x + 4)/x + 3 = 12x^2 + (31x^2 - 3x + 4)/(x + 3)
Step 3: x^3 + 12x^2 + (31x^2 - 3x + 4)/(x + 3) = x^3 + 12x^2 + 31x + (-96x + 4)/(x + 3)
Step 4: x^3 + 12x^2 + 31x + (-96x + 4)/(x + 3) = x^3 + 12x^2 + 31x - 96 + 292/(x + 3)
Step 5: x^3 + 12x^2 + 31x - 96 + 292/(x + 3) We can't continue because we have an integer in the numerator and a variable in the denominator, therefore:
x^4 - 9x^3 - 5x^2 - 3x + 4 / x + 3 = x^3 + 12x^2 + 31x - 96 + 292/(x + 3) , where the remainder is: 292/(x + 3)