163k views
1 vote
Find
f^(-1) for the function
f(x)= \sqrt[3]{x-2}+8.

A.
f^(-1)(x)=(x-8)^3+2
B.
f^(-1)(x)=(x+8)^3+2
C.
f^(-1)(x)= \sqrt[3]{x-8} +2
D.
f^(-1)(x)=(x-8)^3-2

1 Answer

1 vote
The f⁻¹ means that you have to find the inverse of the given original function. The solution is shown below. First, interchange the x and y variables, then solve for y.

f(x) = ∛(x - 2) + 8
y = ∛(x - 2) + 8
x = ∛(y - 2) + 8
x - 8 = ∛(y - 2)
[x - 8 = ∛(y - 2)]³
(x - 8)³ = y - 2
y = (x - 8)³ + 2
f⁻¹(x) = (x - 8)³ + 2

The answer is A.
User Katharine Osborne
by
8.2k points