194k views
2 votes
G find the area of the surface over the given region. use a computer algebra system to verify your results. the sphere r(u,v) = a sin u cos v i + a sin u sin v j + a cos u k, where 0 ≤ u ≤ π and 0 ≤ v ≤ 2π

1 Answer

1 vote
Presumably you should be doing this using calculus methods, namely computing the surface integral along
\mathbf r(u,v).

But since
\mathbf r(u,v) describes a sphere, we can simply recall that the surface area of a sphere of radius
a is
4\pi a^2.

In calculus terms, we would first find an expression for the surface element, which is given by


\displaystyle\iint_S\mathrm dS=\iint_S\left\|(\partial\mathbf r)/(\partial u)*(\partial\mathbf r)/(\partial v)\right\|\,\mathrm du\,\mathrm dv


(\partial\mathbf r)/(\partial u)=a\cos u\cos v\,\mathbf i+a\cos u\sin v\,\mathbf j-a\sin u\,\mathbf k

(\partial\mathbf r)/(\partial v)=-a\sin u\sin v\,\mathbf i+a\sin u\cos v\,\mathbf j

\implies(\partial\mathbf r)/(\partial u)*(\partial\mathbf r)/(\partial v)=a^2\sin^2u\cos v\,\mathbf i+a^2\sin^2u\sin v\,\mathbf j+a^2\sin u\cos u\,\mathbf k

\implies\left\|(\partial\mathbf r)/(\partial u)*(\partial\mathbf r)/(\partial v)\right\|=a^2\sin u

So the area of the surface is


\displaystyle\iint_S\mathrm dS=\int_(u=0)^(u=\pi)\int_(v=0)^(v=2\pi)a^2\sin u\,\mathrm dv\,\mathrm du=2\pi a^2\int_(u=0)^(u=\pi)\sin u

=-2\pi a^2(\cos\pi-\cos 0)

=-2\pi a^2(-1-1)

=4\pi a^2

as expected.
User FVod
by
8.4k points

No related questions found