92.8k views
3 votes
How do you re-write this using only positive exponents?

3x^-4/3 (1+2x^5/3)

User Nanna
by
9.0k points

1 Answer

4 votes

\bf \left.\qquad \qquad \right.\textit{negative exponents}\\\\ a^{-{ n}} \implies \cfrac{1}{a^( n)} \qquad \qquad \cfrac{1}{a^( n)}\implies a^{-{ n}} \qquad \qquad a^{{{ n}}}\implies \cfrac{1}{a^{-{{ n}}}} \\\\\\ and\qquad \quad a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^( n)} \qquad \qquad \sqrt[{ m}]{a^( n)}\implies a^{\frac{{ n}}{{ m}}}\\\\ -------------------------------\\\\


\bf \cfrac{3x^{-(4)/(3)}}{3(1+2x^{(5)/(3)})}\implies \cfrac{3}{3}\cdot \cfrac{1}{x^{(4)/(3)}}\cdot \cfrac{1}{(1+2x^{(5)/(3)})}\implies \cfrac{1}{x^{(4)/(3)}(1+2x^{(5)/(3)})}


\bf \cfrac{1}{x^{(4)/(3)}+2x^{(5)/(3)}x^{(4)/(3)}}\implies \cfrac{1}{x^{(4)/(3)}+2x^{(5)/(3)+(4)/(3)}}\implies \cfrac{1}{x^{(4)/(3)}2x^{(9)/(3)}}\implies \cfrac{1}{x^{(4)/(3)}+2x^3} \\\\\\ \cfrac{1}{\sqrt[3]{x^4}+2x^3}\implies \cfrac{1}{x\sqrt[3]{x}+2x^3}\implies \cfrac{1}{x(\sqrt[3]{x}+2x^2)}
User Filomat
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories