162k views
0 votes
#3 and #4 with work

#3 and #4 with work-example-1
User Istopopoki
by
8.3k points

1 Answer

1 vote
3)


\bf sin(\theta )=\cfrac{3}{5}\cfrac{\leftarrow opposite}{\leftarrow hypotenuse}\impliedby \textit{now let's find the \underline{adjacent} side} \\\\\\ \textit{using the pythagorean theorem}\\\\ c^2=a^2+b^2\implies \pm√(c^2-b^2)=a\qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases}


\bf \pm√(5^2-3^2)=a\implies \pm√(16)=a\implies \pm 4=a \\\\\\ \textit{now, }\theta \textit{ is in the \underline{1st quadrant}, where the adjacent is \underline{positive}} \\\\\\ \boxed{4=a}\qquad \qquad thus\qquad \qquad cos(\theta )=\cfrac{4}{5}\cfrac{\leftarrow adjacent}{\leftarrow hypotenuse}\\\\ -------------------------------\\\\ sin(2\theta)=2sin(\theta)cos(\theta)\implies 2\cdot \cfrac{4}{5}\cdot \cfrac{3}{5}\implies \cfrac{24}{25}

4)


\bf \theta \qquad 0\le \theta \ \textless \ 2\pi \\\\ -------------------------------\\\\ cos^2(\theta )=1\implies cos(\theta )=√(1)\implies cos(\theta )=1 \\\\\\ cos^(-1)[cos(\theta )]=cos^(-1)(1)\implies \measuredangle \theta =cos^(-1)(1)\implies \measuredangle \theta =0
User Abderrahmen Hanafi
by
7.4k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories