24.1k views
4 votes
The equation y=xsinx and wants to prove x dpower 3y/dxpower3+x dy/dx+2y=0

User Calebe
by
8.7k points

1 Answer

4 votes

y=x\sin x


(\mathrm dy)/(\mathrm dx)=x(\mathrm d(\sin x))/(\mathrm dx)+(\mathrm dx)/(\mathrm dx)\sin x=x\cos x+\sin x


(\mathrm d^2y)/(\mathrm dx^2)=x(\mathrm d(\cos x))/(\mathrm dx)+(\mathrm dx)/(\mathrm dx)\cos x+(\mathrm d(\sin x))/(\mathrm dx)

(\mathrm d^2y)/(\mathrm dx^2)=-x\sin x+\cos x+\cos x

(\mathrm d^2y)/(\mathrm dx^2)=-x\sin x+2\cos x


(\mathrm d^3y)/(\mathrm dx^3)=-\left(x(\mathrm d(\sin x))/(\mathrm dx)+(\mathrm dx)/(\mathrm dx)\sin x\right)+2(\mathrm d(\cos x))/(\mathrm dx)

(\mathrm d^3y)/(\mathrm dx^3)=-x\cos x-\sin x-2\sin x

(\mathrm d^3y)/(\mathrm dx^3)=-x\cos x-3\sin x

Substitute the derivatives into the given ODE and check to see if the relation is an identity.


x(\mathrm d^3y)/(\mathrm dx^3)+x(\mathrm dy)/(\mathrm dx)+2y=0

x(-x\cos x-3\sin x)+x(x\cos x+\sin x)+2x\sin x=0

-x^2\cos x-3x\sin x+x^2\cos x+x\sin x+2x\sin x=0

0=0

and we're done.
User Peter Bushnell
by
8.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories