201k views
0 votes
Find the inverse of the function. f(x) = the cube root of quantity x divided by eight. - 4

2 Answers

6 votes

\bf f(x)=y=\sqrt[3]{\cfrac{x}{8}}-4\impliedby \textit{first, let's switch the variables about} \\\\\\ \underline{x}=\sqrt[3]{\cfrac{\underline{y}}{8}}-4\implies x+4=\sqrt[3]{\cfrac{\underline{y}}{8}}\implies (x+4)^3=\cfrac{y}{8} \\\\\\ \boxed{8(x+4)^3=y}\impliedby f^(-1)(x)
User Thraxil
by
9.2k points
1 vote

Answer:


f^(-1)(x)=8(x+4)^(3)

Explanation:

we have


f(x)=\sqrt[3]{(x)/(8)}-4

Let


y=f(x)


y=\sqrt[3]{(x)/(8)}-4

Exchanges the variable x for y and y for x


x=\sqrt[3]{(y)/(8)}-4

Isolate the variable y


x+4=\sqrt[3]{(y)/(8)}

elevates to the cube both members


(x+4)^(3)=(y)/(8) \\ \\y=8(x+4)^(3)

Let


f^(-1)(x)=y


f^(-1)(x)=8(x+4)^(3) ------> inverse function

User Panosl
by
7.5k points