47.6k views
4 votes
Based on the table of values below, find the slope between points where x = 1 and where x = 4.

X: 1 , 3 , 4
Y: 8, 6, -1

Answer Choices:
A. −3
B. Negative two thirds
C. Three over two
D. 3

User Pato Loco
by
8.1k points

2 Answers

2 votes

\bf \begin{array}{llll} x&\boxed{1}&3&\boxed{4}\\\\ y&\boxed{8}&6&\boxed{-1} \end{array}\\\\ -------------------------------\\\\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ 1}}\quad ,&{{ 8}})\quad % (c,d) &({{ 4}}\quad ,&{{ -1}}) \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{-1-8}{4-1}\implies \cfrac{-9}{3}\implies -3
User Makromat
by
8.3k points
4 votes

Answer:

The slope between the points where x=1 and where x=4 is :

-3

i.e. option: A is the correct answer.

Explanation:

Let Y=f(X)

We are given a table of values as:

X: 1 , 3 , 4

Y: 8, 6, -1

Let m represents the slope .

We know that the slope between the points x=a and x=b is give by:


m=(f(b)-f(a))/(b-a)

Here we are asked to find the slope between x=1 and x=4

i.e. we have:

a=1 and b=4

f(a)=8 and f(b)= -1

Hence, the slope between x=1 and x=4 is calculated as:


m=(-1-8)/(4-1)\\\\m=(-9)/(3)\\\\m=-3

Hence, the slope is:

-3

User Thorben Kuck
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories