19.6k views
5 votes
Which is the graph of y-3 = -2/3(x +6)?

2 Answers

4 votes
The slope is - 2/3

The Y-Intercept is - 1
User Bharathvaj Ganesan
by
8.1k points
3 votes

Answer:

Point slope form: An equation of straight line with slope m and passes through one point
(x_1, y_1) is given by:


y-y_1=m(x-x_1)

Given the equation:
y-3 =- (2)/(3)(x+6) .....[1]

On comparing with point slope form, we have;

Slope(m) =
-(2)/(3)

Since, slope of line is negative means i.,e it is trending downward from left to right.

Now, find the intercept of this equation:

x-intercept: The graph or line crosses the x-axis i.e,

Substitute y = 0 in [1] and solve for x;


0-3 =- (2)/(3)(x+6)


-3 =- (2)/(3)(x+6)

Using distributive property:


-3 = -(2)/(3)x - 4

Add 4 on both sides we get;


-3+4 = -(2)/(3)x - 4+4

Simplify:


1 = -(2)/(3)x

Multiply both sides by
-(3)/(2) we get;


x = -(3)/(2) = -1.5

x-intercept = (-1.5, 0)

Similarly for y-intercept:

Substitute the value x = 0 and solve for y;


y-3 =- (2)/(3)(0+6)


y-3 =- (2)/(3)(6)

Simplify:

y -3 = -4

Add 3 on both sides, we get;

y-3+3 = -4+3

Simplify:

y = -1

y-intercepts = (0, -1)

Now, using these points we get a graph of the equation
y-3 =- (2)/(3)(x+6) as shown below in the attachment.

Which is the graph of y-3 = -2/3(x +6)?-example-1
User Riccardo Casatta
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories