212k views
5 votes
Find the inverse of the function. f(x) = the cube root of quantity x divided by seven. - 9

1 Answer

1 vote
to solve

replace f(x) with y
switch x and y
solve for y
replace y with f⁻¹(x)

so
I'm not sure if it is

f(x)=\sqrt[3]{(x)/(7)}-9 or

f(x)=\sqrt[3]{(x)/(7)-9}


first one

f(x)=\sqrt[3]{(x)/(7)}-9
replace f(x) with y

y=\sqrt[3]{(x)/(7)}-9
switch x and y

x=\sqrt[3]{(y)/(7)}-9
solve for y

x+9=\sqrt[3]{(y)/(7)}

(x+9)^3=(y)/(7)

7(x+9)^3=y
replace y with f⁻¹(x)

f^(-1)(x)=7(x+9)^3

2nd one

f(x)=\sqrt[3]{(x)/(7)-9}
replce f(x) with y

y=\sqrt[3]{(x)/(7)-9}
switch x and y

x=\sqrt[3]{(y)/(7)-9}
solve for y

x^3=(y)/(7)-9

x^3+9=(y)/(7)

7(x^3+9)=y
replace y with f⁻¹(x)

f^(-1)(x)=7(x^3+9)



if you meant
f(x)=\sqrt[3]{(x)/(7)}-9 then the inverse is
f^(-1)(x)=7(x+9)^3

if you meant
f(x)=\sqrt[3]{(x)/(7)-9} then the inverse is
f^(-1)(x)=7(x^3+9)

User Verunar
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories