212k views
5 votes
Find the inverse of the function. f(x) = the cube root of quantity x divided by seven. - 9

1 Answer

1 vote
to solve

replace f(x) with y
switch x and y
solve for y
replace y with f⁻¹(x)

so
I'm not sure if it is

f(x)=\sqrt[3]{(x)/(7)}-9 or

f(x)=\sqrt[3]{(x)/(7)-9}


first one

f(x)=\sqrt[3]{(x)/(7)}-9
replace f(x) with y

y=\sqrt[3]{(x)/(7)}-9
switch x and y

x=\sqrt[3]{(y)/(7)}-9
solve for y

x+9=\sqrt[3]{(y)/(7)}

(x+9)^3=(y)/(7)

7(x+9)^3=y
replace y with f⁻¹(x)

f^(-1)(x)=7(x+9)^3

2nd one

f(x)=\sqrt[3]{(x)/(7)-9}
replce f(x) with y

y=\sqrt[3]{(x)/(7)-9}
switch x and y

x=\sqrt[3]{(y)/(7)-9}
solve for y

x^3=(y)/(7)-9

x^3+9=(y)/(7)

7(x^3+9)=y
replace y with f⁻¹(x)

f^(-1)(x)=7(x^3+9)



if you meant
f(x)=\sqrt[3]{(x)/(7)}-9 then the inverse is
f^(-1)(x)=7(x+9)^3

if you meant
f(x)=\sqrt[3]{(x)/(7)-9} then the inverse is
f^(-1)(x)=7(x^3+9)

User Verunar
by
8.4k points