88.5k views
2 votes
Simplify using the horizontal method (2n^2+5n+5)(2n-4)

User DannyFeliz
by
9.2k points

2 Answers

3 votes
(2n - 4)(2n^2 + 5n + 5) =
2n(2n^2 + 5n + 5) - 4(2n^2 + 5n + 5) =
4n^3 + 10n^2 + 10n - 8n^2 - 20n - 20 =
4n^3 + 2n^2 - 10n - 20 <===
User Gunjan Aggarwal
by
8.1k points
6 votes

Answer:

( 2n² + 5n + 5 ) ( 2n - 4 ) = 4n³ + 2n² -10n -20

Explanation:

Given Expressions for Product: ( 2n² + 5n + 5 ) ( 2n - 4 )

To find: Product of the expression.

Consider,

( 2n² + 5n + 5 ) ( 2n - 4 )

⇒ 2n² ( 2n - 4 ) + 5n ( 2n - 4 ) + 5 ( 2n - 4 )

⇒ 2n² × 2n + 2n² × (-4) + 5n × 2n + 5n × (-4) + 5 × 2n + 5 × (-4)

⇒ 2 × 2 × n² × n + 2 × (-4) n² + 5 × 2 × n × n + 5 × (-4) n + 10n + (-20)

⇒ 4n³ + (-8)n² + 10n² + (-20)n + 10n -20

⇒ 4n³ - 8n² + 10n² - 20n + 10n -20

⇒ 4n³ +( -8 + 10 ) n² + ( -20 + 10 ) n -20

⇒ 4n³ + 2n² -10n -20

Therefore, ( 2n² + 5n + 5 ) ( 2n - 4 ) = 4n³ + 2n² -10n -20

User Jlogan
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories