229k views
3 votes
Find the slope of the curve yequals=x2minus−33xminus−55 at the point ​p(22​,negative 7−7​) by finding the limit of the secant slopes through point p.

1 Answer

4 votes

(dy)/(dx) = \lim_(h \to 0) (f(x + h) - f(x))/(h)

= \lim_(h \to 0) ((x + h)^(2) - 33(x + h) - 55 - x^(2) + 33x + 55)/(h)

= \lim_(h \to 0) (x^(2) + 2xh + h^(2) - 33x - 33h - 55 - x^(2) + 33x + 55)/(h)

= \lim_(h \to 0) (2xh + h^(2) - 33h)/(h)

= \lim_(h \to 0) 2x + h - 33

= 2x - 33


\text{At x = 22, } (dy)/(dx) = 2(22) - 33 = 44 - 33 = 11

Thus, the slope at P is 11.
User Aslam A
by
8.1k points