223k views
2 votes
Use the functions f(x) = 8x + 9 and g(x) = 2x − 5 to complete the function operations listed below.

Part A: Find (f + g)(x). Show your work. (3 points)

Part B: Find (f ⋅ g)(x). Show your work. (3 points)

Part C: Find f[g(x)]. Show your work. (4 points)

User Kaleigh
by
7.8k points

2 Answers

2 votes
(a)f(x) + g(x) = 8x + 9 + 2x - 5 = 10x + 4

(b)(f.g)(x) = (8x + 9) (2x - 5)
= 16x - 40 + 18x - 45
= 34x - 85

(c)f(g(x)) = 8(2x - 5) + 9
= 16x - 40 + 9
= 16x - 31

Hope it helped!
User Lucas Tierney
by
8.5k points
1 vote

Answer:

Part A -
(f+g)(x)=10x+4

Part B -
(f\cdot g)(x)=16x^2-22x-45

Part C -
f[g(x)]=16x-31

Explanation:

Given : Functions
f(x)=8x+9 and
g(x)=2x-5

To find : Complete the function below :

Part A : (f+g)(x)

As
(f+g)(x)=f(x)+g(x)

Substitute the value of f(x) and g(x)


(f+g)(x)=8x+9+(2x-5)


(f+g)(x)=8x+9+2x-5


(f+g)(x)=10x+4

Part B : (f ⋅ g)(x)

As
(f\cdot g)(x)=f(x)\cdot g(x)

Substitute the value of f(x) and g(x)


(f\cdot g)(x)=(8x+9)\cdot (2x-5)


(f\cdot g)(x)=8x* 2x-8x* 5+9* 2x-9* 5


(f\cdot g)(x)=16x^2-40x+18x-45


(f\cdot g)(x)=16x^2-22x-45

Part C : f[g(x)]

f[g(x)] means substitute value of g(x) in place of x in f(x)


f[g(x)]=f[2x-5]


f[g(x)]=8(2x-5)+9


f[g(x)]=16x-40+9


f[g(x)]=16x-31

User Roka
by
7.9k points