161k views
4 votes
Use mathematical induction to prove the statement is true for all positive integers n, or show why it is false:

1^2+ 4^2+ 7^2 +...+(3n-2)^2 = n(6n^2-3n-1) / 2

1 Answer

5 votes

\text{Proof by induction:}

\text{Test that the statement holds or n = 1}


LHS = (3 - 2)^(2) = 1

RHS = (6 - 4)/(2) = (2)/(2) = 1 = LHS

\text{Thus, the statement holds for the base case.}


\text{Assume the statement holds for some arbitrary term, n= k}

1^(2) + 4^(2) + 7^(2) + ... + (3k - 2)^(2) = (k(6k^(2) - 3k - 1))/(2)


\text{Prove it is true for n = k + 1}

RTP: 1^(2) + 4^(2) + 7^(2) + ... + [3(k + 1) - 2]^(2) = ((k + 1)[6(k + 1)^(2) - 3(k + 1) - 1])/(2) = ((k + 1)[6k^(2) + 9k + 2])/(2)


LHS = \underbrace{1^(2) + 4^(2) + 7^(2) + ... + (3k - 2)^(2)}_{(k(6k^(2) - 3k - 1))/(2)} + [3(k + 1) - 2]^(2)

= (k(6k^(2) - 3k - 1))/(2) + [3(k + 1) - 2]^(2)

= (k(6k^(2) - 3k - 1) + 2[3(k + 1) - 2]^(2))/(2)

= (k(6k^(2) - 3k - 1) + 2(3k + 1)^(2))/(2)

= (k(6k^(2) - 3k - 1) + 18k^(2) + 12k + 2)/(2)

= (k(6k^(2) - 3k - 1 + 18k + 12) + 2)/(2)

= \frac{k(6k^(2) + 15k + 11) + 2}{}

= ((k + 1)[6k^(2) + 9k + 2])/(2)

= ((k + 1)[6(k + 1)^(2) - 3(k + 1) - 1])/(2)

= RHS

Since it is true for n = 1, n = k, and n = k + 1, by the principles of mathematical induction, it is true for all positive values of n.
User Hqjma
by
6.5k points