2.4k views
4 votes
Rewrite with only sin x and cos x.

sin (3x) - cos (x)

Please show answer with work

1 Answer

3 votes
The main identities we use are:

i)
sin(a+b)=sin(a)cos(b)+sin(b)cos(a)

ii)
sin(2a)=2sin(a)sin(b)

iii)
cos(2x)= cos^(2)(x)-sin^(2)(x)


Thus,

sin (3x)=sin(2x+x)=sin(2x)cos(x) + cos(2x)sin(x)


=2sin(x)cos(x)cos(x)+[cos^(2)(x)-sin^(2)(x)]sin(x)


=2sin(x)cos^(2) (x)+sin(x)cos^(2)(x)-sin^(3)(x)


=3sin(x)cos^(2)(x)-sin^(3)(x)


Answer:
3sin(x)cos^(2)(x)-sin^(3)(x)

User Randomize
by
7.8k points

No related questions found