142k views
2 votes
Help please! Worth some points!

Help please! Worth some points!-example-1

1 Answer

3 votes

f(x)=\begin{cases}5-x^2&amp;\text{for }x<0\\-5&amp;\text{for }x=0\\2x+5&amp;\text{for }x>0\end{cases}


\displaystyle\lim_(x\to0^-)f(x)=\lim_(x\to0)(5-x^2)=5

\displaystyle\lim_(x\to0^+)f(x)=\lim_(x\to0)(2x+5)=5

\implies\displaystyle\lim_(x\to0)f(x)=5

- - -


f(x)=\begin{cases}x-3&amp;\text{for }x<4\\x+3&amp;\text{for }x>4\end{cases}


\displaystyle\lim_(x\to4^-)f(x)=\lim_(x\to4)(x-3)=1

\displaystyle\lim_(x\to4^+)f(x)=\lim_(x\to4)(x+3)=7

\implies\displaystyle\lim_(x\to4)f(x)\text{ does not exist}
User Contentclown
by
8.4k points

No related questions found