188k views
2 votes
Help with this integral


\int\limits (dx)/(x^(2)-4x-13)

1 Answer

7 votes

x^2-4x-13=(x-2)^2-17


x-2=√(17)\sec y

\mathrm dx=√(17)\sec y\tan y\,\mathrm dy


\displaystyle\int(\mathrm dx)/(x^2-4x-13)=\int(√(17)\sec y\tan y)/((√(17)\sec y)^2-17)\,\mathrm dy

=\displaystyle\frac1{√(17)}\int(\sec y\tan y)/(\sec^2y-1)\,\mathrm dy

=\displaystyle\frac1{√(17)}\int(\sec y\tan y)/(\tan^2y)\,\mathrm dy

=\displaystyle\frac1{√(17)}\int(\sec y)/(\tan y)\,\mathrm dy

=\displaystyle\frac1{√(17)}\int\frac{\frac1{\cos y}}{(\sin y)/(\cos y)}\,\mathrm dy

=\displaystyle\frac1{√(17)}\int\csc y\,\mathrm dy

=-\frac1{√(17)}\ln|\csc y+\cot y|+C


\sec y=(x-2)/(√(17))\iff y=\sec^(-1)(x-2)/(√(17))

\implies\csc y=(x-2)/(√((x-2)^2-17))=(x-2)/(√(x^2-4x-13))

\implies\cot y=(√(17))/(√((x-2)^2-17))=(√(17))/(√(x^2-4x-13))


\displaystyle\int(\mathrm dx)/(x^2-4x-13)=-\frac1{√(17)}\ln\left|(x-2+√(17))/(√(x^2-4x-13))\right|+C
User Ryan Amies
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories