136k views
5 votes
Factor this expression. With work please!

Factor this expression. With work please!-example-1
User BruceM
by
7.6k points

1 Answer

7 votes

\bf \textit{difference of squares} \\ \quad \\ (a-b)(a+b) = a^2-b^2\qquad \qquad a^2-b^2 = (a-b)(a+b)\\ \quad \\ \quad \\ % difference of cubes \textit{difference of cubes} \\ \quad \\ a^3+b^3 = (a+b)(a^2-ab+b^2)\qquad (a+b)(a^2-ab+b^2)= a^3+b^3 \\ \quad \\ a^3-b^3 = (a-b)(a^2+ab+b^2)\qquad (a-b)(a^2+ab+b^2)= a^3-b^3\\\\ -------------------------------


\bf x^6-9x^4-81x^2+729\qquad \begin{cases} x^6=x^(2\cdot 3)\\ \qquad (x^2)^3\\ 729=9\cdot 9\cdot 9\\ \qquad 9^3\\ 81=9\cdot 9\\ \qquad 9^2 \end{cases}\\\\ -------------------------------\\\\


\bf (x^6+729)-(9x^4+81x^2)\implies [(x^2)^3+9^3]-(9x^2x^2+9^2x^2) \\\\\\\ [\underline{(x^2+9)}(x^4-9x^2+9^2)]\ -\ [9x^2\underline{(x^2+9)}]\impliedby \begin{array}{llll} notice\ the\\ \textit{\underline{common factor}} \end{array} \\\\\\ (x^2+9)\ [(x^4\underline{-9x^2}+9^2)\underline{-9x^2}]\impliedby \textit{now we add \underline{these two}} \\\\\\


\bf (x^2+9)\ [x^4-18x^2+9^2]\impliedby \begin{cases} √(x^4)=x^2\\ √(9^2)=9\\ 18x^2=2(x^2)(9)\\ thus\ a\\ \textit{perfect square trinomial} \end{cases} \\\\\\ (x^2+9)\ [(x^2)^2-18x^2+9^2] \\\\\\ (x^2+9)(x^2-9)^2\implies (x^2+9)(x^2-3^2)^2 \\\\\\ (x^2+9)\ [(x-3)(x+3)]^2\implies \boxed{(x^2+9)(x-3)^2(x+3)^2} \\\\\\ \textit{and I guess you could be redundant and use} \\\\\\ (x^2+9)(x-3)(x-3)(x+3)(x+3)
User Jacek Konieczny
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories