167k views
2 votes
The population of a local species of bees can be found using an infinite geometric series where a1=860 and the common ratio is 1/5. Write the sum in sigma notation, and calculate the sum(if possible)that will be the upper limit of this population

User HopeKing
by
8.6k points

1 Answer

4 votes

a_1=860

a_2=\frac{a_1}5

a_3=\frac{a_2}5=(a_1)/(5^2)

\vdots

a_n=\frac{a_(n-1)}5=(a_(n-2))/(5^2)=\cdots=(a_1)/(5^(n-1))

The
kth partial sum is


\displaystyle S_k=\sum_(n=1)^ka_n=\sum_(n=1)^k(a_1)/(5^(n-1))

S_k=a_1\left(1+\frac15+\frac1{5^2}+\cdots+\frac1{5^(k-2)}+\frac1{5^(k-1)}

\frac15S_k=a_1\left(\frac15+\frac1{5^2}+\frac1{5^3}+\cdots+\frac1{5^(k-1)}+\frac1{5^k}\right)


\implies S_k-\frac15S_k=a_1\left(1-\frac1{5^k}\right)

\frac45 S_k=860\left(1-\frac1{5^k}\right)

S_k=1075-(1075)/(5^k)

As
k\to\infty, we're left with


\displaystyle\sum_(n=1)^\infty a_n=\lim_(k\to\infty)\left(1075-(1075)/(5^k)\right)=1075

which is the upper limit to the population of the bees.
User Ryder Bergerud
by
7.6k points