20.6k views
2 votes
Match the circle equations in general form with their corresponding equations in standard form. x2 + y2 − 4x + 12y − 20 = 0 (x − 6)2 + (y − 4)2 = 56 x2 + y2 + 6x − 8y − 10 = 0 (x − 2)2 + (y + 6)2 = 60 3x2 + 3y2 + 12x + 18y − 15 = 0 (x + 2)2 + (y + 3)2 = 18 5x2 + 5y2 − 10x + 20y − 30 = 0 (x + 1)2 + (y − 6)2 = 46 2x2 + 2y2 − 24x − 16y − 8 = 0 x2 + y2 + 2x − 12y − 9 = 0

2 Answers

4 votes

Answer:

x2 + y2 − 4x + 12y − 20 = 0 and (x-2)2 + (y+6)2 = 60

x2 + y2 + 2x - 12y - 9 = 0 and (x + 1)2 + (y - 6)2 = 46

2x2 + 2y2 - 24x - 16y - 8 = 0 and (x - 6)2 + (y - 4)2 = 56

3x2 +3y2 + 12x +18y - 15 = 0 and (x + 2)2 + (y + 3)2 = 18

I got a 100 on PLATO.

Explanation:

User Smuvv
by
8.5k points
2 votes
The equation form of a circle is (x - a)² + (y - b)² = r²

Equation 1:

x² - 4x + y² + 12y - 20 = 0 ⇒ use the completing the square method for x² - 4x and y² + 12y

x² - 4x = (x - 2)² - 4
y² + 12y = (y + 6)² - 36

Put them back together, we have
(x - 2)² - 4 + (y + 6)² - 36 - 20 = 0
(x - 2)² + (y + 6)² -4 - 36 - 20 = 0
(x - 2)² + (y + 6)² - 60 = 0
(x - 2)² + (y + 6)² = 60

Equation 2:

x² + y² + 6x - 8y - 10 = 0
(x² + 6x) + (y² - 8y) -10 = 0
(x + 3)² - 9 + (y - 4)² -16 - 10 = 0
(x + 3)² + (y - 4)² - 9 - 16 - 10 = 0
(x + 3)² + (y - 4)² - 35 = 0
(x + 3)² + (y - 4)² = 35

Equation 3:

3x² + 12x + 3y² +18y - 15 = 0
3 [x² + 4x + y² + 6y - 5] = 0
x² + 4x + y² + 6y - 5 = 0
(x² + 4x) + (y² + 6y) - 5 = 0
(x + 2)² - 4 + (y + 3)² - 9 - 5 = 0
(x + 2)² + (y + 3)² - 4 - 9 -5 = 0
(x + 2)² + (y + 3)² - 18 = 0
(x + 2)² + (y + 3)² = 18

Equation 4:

5x² + 5y² - 10x + 20y - 30 = 0
5 [x² + y² - 2x + 4y - 6] = 0
x² + y² - 2x + 4y - 6 = 0
(x² - 2x) + (y² + 4y) - 6 = 0
(x - 1)² - 2 + (y + 2)² - 4 - 6 =0
(x - 1)² + (y + 2)² - 2 - 4 - 6 = 0
(x - 1)² + (y + 2)² - 12 = 0
(x - 1)² + (y + 2)² = 12

Equation 5:

2x² + 2y² - 24x - 16y -8 = 0
2 [x² + y² - 12x - 8y - 4] = 0
x² + y² - 12x - 8y - 4 = 0
(x² - 12x) + (y² - 8y) - 4 = 0
(x - 6)² - 36 + (y - 4)² - 16 - 4 = 0
(x - 6)² + (y - 4)² -36 - 16 - 4 = 0
(x - 6)² + (y - 4)² - 56 = 0
(x - 6)² + (y - 4)² = 56

Equation 6:

x² + y² + 2x - 12y - 9 = 0
(x² + 2x) + (y² - 12y) - 9 = 0
(x + 1)² - 1 + (y - 6)² - 36 - 9 = 0
(x + 1)² + (y - 6)² - 1 - 36 - 9 = 0
(x + 1)² + (y - 6)² - 46 = 0
(x + 1)² + (y - 6)² = 46


User AsThoughtWill
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories