148k views
1 vote
What are the period and phase shift for f(x) = tan(2x + π)?

User JNL
by
7.4k points

2 Answers

6 votes

\bf \qquad \qquad \qquad \qquad \textit{function transformations} \\ \quad \\ % function transformations for trigonometric functions \begin{array}{rllll} % left side templates f(x)=&{{ A}}sin({{ B}}x+{{ C}})+{{ D}} \\\\ f(x)=&{{ A}}cos({{ B}}x+{{ C}})+{{ D}}\\\\ f(x)=&{{ A}}tan({{ B}}x+{{ C}})+{{ D}} \end{array} \\\\ -------------------\\\\


\bf \bullet \textit{ stretches or shrinks}\\ \left. \qquad \right. \textit{horizontally by amplitude } |{{ A}}|\\\\ \bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }{{ B}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the y-axis}


\bf \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\ \bullet \textit{vertical shift by }{{ D}}\\ \left. \qquad \right. if\ {{ D}}\textit{ is negative, downwards}\\\\ \left. \qquad \right. if\ {{ D}}\textit{ is positive, upwards}\\\\


\bf \bullet \textit{function period or frequency}\\ \left. \qquad \right. \frac{2\pi }{{{ B}}}\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\\\ \left. \qquad \right. \frac{\pi }{{{ B}}}\ for\ tan(\theta),\ cot(\theta)

with that template in mind, let's see


\bf \begin{array}{llcll} f(x)=tan(&2x&+\pi )\\ &\uparrow &\uparrow \\ &B&C \end{array}\quad \begin{cases} phase\ shift\\ (C)/(B)\implies (\pi )/(2)\\ \qquad \textit{to the left}\\ ----------\\ period\\ (\pi )/(B)\implies (\pi )/(2) \end{cases}
User Eyalb
by
8.1k points
3 votes
The period is pi/2 (because of the 2x - the regular period for tan x is pi - the 2 squashes it up to pi/2)
User Natkeeran
by
7.8k points

No related questions found