229k views
5 votes
What is the period of the sinusoid given by y=-4sin(
(2π)/(3) x) ?

What is the period of the sinusoid given by y=-4sin( (2π)/(3) x) ?-example-1
User Shankar
by
8.4k points

2 Answers

3 votes

Answer:

The answer is 3 for A P E X

Explanation:

User Hedge
by
7.6k points
1 vote

\bf \qquad \qquad \qquad \qquad \textit{function transformations} \\ \quad \\ % function transformations for trigonometric functions \begin{array}{rllll} % left side templates f(x)=&{{ A}}sin({{ B}}x+{{ C}})+{{ D}} \\\\ f(x)=&{{ A}}cos({{ B}}x+{{ C}})+{{ D}}\\\\ f(x)=&{{ A}}tan({{ B}}x+{{ C}})+{{ D}} \end{array} \\\\ -------------------\\\\


\bf \bullet \textit{ stretches or shrinks}\\ \left. \qquad \right. \textit{horizontally by amplitude } |{{ A}}|\\\\ \bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }{{ B}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the y-axis}


\bf \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\


\bf \bullet \textit{vertical shift by }{{ D}}\\ \left. \qquad \right. if\ {{ D}}\textit{ is negative, downwards}\\\\ \left. \qquad \right. if\ {{ D}}\textit{ is positive, upwards}\\\\ \bullet \textit{function period or frequency}\\ \left. \qquad \right. \frac{2\pi }{{{ B}}}\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\\\ \left. \qquad \right. \frac{\pi }{{{ B}}}\ for\ tan(\theta),\ cot(\theta)

with that template in mind, let's see


\bf \begin{array}{llll} y=&-4sin(&(2\pi )/(3)x)\\ &A&B \end{array}\qquad period\implies \cfrac{2\pi }{B}\implies \cfrac{2\pi }{(2\pi )/(3)}\implies \cfrac{(2\pi )/(1)}{(2\pi )/(3)} \\\\\\ \cfrac{2\pi }{1}\cdot \cfrac{3}{2\pi }\implies 3