3.9k views
1 vote
Rewrite sin 15 degree in terms of a 75 degree angle and in terms of the reciprocal of a trigonometric function.

User Oumar
by
7.0k points

1 Answer

6 votes

\bf csc(\theta)=\cfrac{1}{sin(\theta)} \\\\\\ sin({{ \alpha}} - {{ \beta}})=sin({{ \alpha}})cos({{ \beta}})- cos({{ \alpha}})sin({{ \beta}})\\\\ -------------------------------\\\\ sin(15^o)\implies sin(45^o-30^o) \\\\\\ sin(45^o)cos(30^o)-cos(45^o)sin(30^o)


\bf \cfrac{√(2)}{2}\cdot \cfrac{√(3)}{2}-\cfrac{√(2)}{2}\cdot \cfrac{1}{2}\implies \cfrac{√(6)}{4}-\cfrac{√(2)}{4}\implies \cfrac{√(6)-√(2)}{4}\\\\ -------------------------------\\\\ csc(15^o)=\cfrac{1}{sin(15^o)}\implies csc(15^o)=\cfrac{1}{(√(6)-√(2))/(4)} \\\\\\ csc(15^o)=\cfrac{4}{√(6)-√(2)}

and now, we can rationalize the denominator by using its conjugate and difference of squares.


\bf \cfrac{4}{√(6)-√(2)}\cdot \cfrac{√(6)+√(2)}{√(6)+√(2)}\implies \cfrac{4(√(6)+√(2))}{(√(6)-√(2))(√(6)+√(2))} \\\\\\ \cfrac{4(√(6)+√(2))}{(√(6))^2-(√(2))^2}\implies \cfrac{4(√(6)+√(2))}{6-2}\implies \boxed{√(6)+√(2)}
User Amr Barakat
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories