Final Answer:
The standard form of the equation of the hyperbola with vertices at (-10, -15) and (70, -15) and one of its foci at (-11, -15) is (x - 30)^2 / 1600 - (y + 15)^2 / 81 = 1
Step-by-step explanation:
To write the standard form of the equation of a hyperbola with the given vertices and a focus, we'll follow these steps:
1. Determine the center of the hyperbola.
2. Calculate the distance between the vertices and the center to find the length of the transverse axis (2a).
3. Calculate the distance between a focus and the center to find the focal distance (c).
4. Use the relationship c^2 = a^2 + b^2 to determine the length of the conjugate axis (2b).
5. Write the standard form equation based on the orientation of the hyperbola.
Step 1: Determine the center of the hyperbola.
The center of the hyperbola is the midpoint of the line segment joining the two vertices. Since the vertices are at (-10, -15) and (70, -15), the center (h, k) can be found as follows:
h = (-10 + 70) / 2 = 60 / 2 = 30
k = (-15 + (-15)) / 2 = -30 / 2 = -15
So, the center of the hyperbola is at (30, -15).
Step 2: Calculate the length of the transverse axis (2a).
The distance between the vertices is the length of the transverse axis. The vertices are 80 units apart because they are at (-10, -15) and (70, -15). This means:
2a = 80
a = 40
Therefore, the length of the semi-transverse axis a is 40 units.
Step 3: Calculate the focal distance (c).
The focal distance is the distance between the center and one of the foci. We were given one focus at (-11, -15). Since the center is at (30, -15), the focal distance c is:
c = |30 - (-11)| = |30 + 11| = 41
Step 4: Use the relationship c^2 = a^2 + b^2 to determine b.
We know that a = 40 and c = 41. Plugging these values into the relationship gives us:
41^2 = 40^2 + b^2
1681 = 1600 + b^2
b^2 = 1681 - 1600
b^2 = 81
b = 9
Therefore, the length of the semi-conjugate axis b is 9 units.
Step 5: Write the standard form equation.
Since the hyperbola is horizontal (the vertices have the same y-coordinate), the standard form of its equation is:
(x - h)^2 / a^2 - (y - k)^2 / b^2 = 1
Plugging in the values for h, k, a, and b, we get:
(x - 30)^2 / 40^2 - (y + 15)^2 / 9^2 = 1
Simplify further by squaring the values of a and b:
(x - 30)^2 / 1600 - (y + 15)^2 / 81 = 1
This is the standard form of the equation of the hyperbola with vertices at (-10, -15) and (70, -15) and one of its foci at (-11, -15).