219k views
5 votes
What is the coefficient of x^2y^3 in the expansion of (2x+y)^5

User Yserbius
by
7.2k points

2 Answers

2 votes

Answer:40

Explanation:

algebra 2 test

User Kallja
by
7.8k points
4 votes

Answer:

The coefficient of x²y³ is 40.

Explanation:

The binomial expansion is defined as


(a+b)^n=^nC_0a^n+^nC_1a^(n-1)b+...+^nC_ra^rb^(n-r)+....+^nC_nb^n

The expression is


(2x+y)^5

Expand the binomial expansion.


(2x+y)^5=^5C_0(2x)^5+^5C_1(2x)^(4)(y)+^5C_2(2x)^(3)(y)^2+^5C_3(2x)^(2)(y)^3+^5C_4(2x)^(1)(y)^4+^5C_5(y)^5

Combination formula:


^nC_r=(n!)/(r!(n-r)!)


(2x+y)^5=32 x^5 + 80 x^4 y + 80 x^3 y^2 + 40 x^2 y^3 + 10 x y^4 + y^5

Therefore the coefficient of x²y³ is 40.

User Efultz
by
7.6k points