149k views
3 votes
Find the general solution of the given system. dx dt = −6x + 4y dy dt = − 7 4 x + 2y

User Roms
by
8.5k points

1 Answer

2 votes
I assume the coefficient on
x in the second equation is
-\frac74. The coefficient matrix


\begin{bmatrix}-6&4\\\\-\frac74&2\end{bmatrix}

has eigenvalues given by


\begin{vmatrix}-6-\lambda&4\\\\-\frac74&2-\lambda\end{vmatrix}=\lambda^2+4\lambda-5=(\lambda+5)(\lambda-1)=0

The eigenvalues are thus
\lambda_1=-5 and
\lambda_2=1.

For the eigenvalue
\lambda_1, the corresponding eigenvector
\eta_1 satisfies


\begin{bmatrix}-1&4\\\\-\frac74&7\end{bmatrix}\begin{bmatrix}\eta_(1,1)\\\eta_(1,2)\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

\implies\eta_(1,1)=4\eta_(1,2)

so that we can choose
\eta_1=\begin{bmatrix}4\\1\end{bmatrix}.

For
\lamda_2=1, we have


\begin{bmatrix}-7&4\\\\-\frac74&1\end{bmatrix}\begin{bmatrix}\eta_(2,1)\\\eta_(2,2)\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

\implies7\eta_(2,1)=4\eta_(2,2)

and we can choose
\eta_2=\begin{bmatrix}4\\7\end{bmatrix} for the corresponding eigenvector.

Then the general solution to the ODE system is given by


\begin{bmatrix}x(t)\\y(t)\end{bmatrix}=C_1\begin{bmatrix}4\\1\end{bmatrix}e^(-5t)+\C_2\begin{bmatrix}4\\7\end{bmatrix}e^t
User TGrif
by
9.3k points

Related questions

asked Oct 2, 2024 113k views
Dmitryro asked Oct 2, 2024
by Dmitryro
7.4k points
1 answer
1 vote
113k views
1 answer
4 votes
58.4k views