40.0k views
1 vote
I need help with a homework assignment:

Write each series in summation notation beginning with k = 1.

1/2 + 2/3 + 3/4 + 4/5 + 5/6


−11 + 12 − 13 + 14 − 15 + 16

9 − 16 + 25 − 36 + 49 − 64

3 + (3/2) + 1 + (3/4) + (3/5)

I get the numbers that go under and on top of the sigma, I need help deriving the explicit value for the sequence that goes on the right of the sigma.
Thanks

1 Answer

5 votes

\bf \cfrac{1}{2},\cfrac{2}{3},\cfrac{3}{4},\cfrac{4}{5},\cfrac{5}{6}\qquad \sum\limits_(k=1)^5\ \cfrac{k}{k+1} \\\\\\ -11,12,-13,14,-15,16\qquad \sum\limits_(k=1)^6\ (-1)^k(k+10)\\\\ -------------------------------\\\\ \begin{array}{lllllllllll} 9&,&-16&,&25&,&-36&,&49&,&-64\\\\ (3)^2&,&-(4)^2&,&(5)^2&,&-(6)^2&,&(7)^2&,&-(8)^2 \end{array} \\\\\\ \sum\limits_(k=1)^6\ (-1)^(k+1)(k+2)^2


\bf -------------------------------\\\\ \begin{array}{lllllllllll} 3&,&(3)/(2)&,&1&,&(3)/(4)&,&(3)/(5)\\\\ (3)/(1)&,&(3)/(2)&,&(3)/(3)&,&(3)/(4)&,&(3)/(5) \end{array}\qquad \sum\limits_(k=1)^5\ \cfrac{3}{k}
User Mikael Gueck
by
8.3k points