19.4k views
4 votes
(a) find the position vector of a particle that has the given acceleration and the specified initial velocity and position. a(t) = 8t i + sin t j + cos 2t k, v(0) = i, r(0) = j

User Mallwright
by
6.8k points

1 Answer

4 votes

\mathbf a(t)=8t\,\mathbf i+\sin t\,\mathbf j+\cos2t\,\mathbf k


\mathbf v(t)=\displaystyle\int\mathbf a(t)\,\mathrm dt

\mathbf v(t)=(4t^2+C_1)\,\mathbf i+(-\cos t+C_2)\,\mathbf j+\left(\frac12\sin2t+C_3\right)\,\mathbf k


\mathbf v(0)=\mathbf i

\implies\begin{cases}4(0)^2+C_1=1\\-\cos0+C_2=0\\\frac12\sin2(0)+C_3=0\end{cases}\implies C_1=1,C_2=1,C_3=0


\mathbf v(t)=(4t^2+1)\,\mathbf i+(1-\cos t)\,\mathbf j+\frac12\sin2t\,\mathbf k


\mathbf r(t)=\displaystyle\int\mathbf v(t)\,\mathrm dt

\mathbf r(t)=\left(\frac43t^3+t+C_4\right)\,\mathbf i+(t-\sin t+C_5)\,\mathbf j+\left(-\frac12\cos2t+C_6\right)\,\mathbf k


\mathbf r(0)=\mathbf j

\implies\begin{cases}\frac43(0)^2+0+C_4=0\\0-\sin0+C_5=1\\-\frac12\cos2(0)+C_6=0\end{cases}\implies C_4=0,C_5=1,C_6=\frac12


\mathbf r(t)=\left(\frac43t^3+t\right)\,\mathbf i+(t-\sin t+1)\,\mathbf j+\left(\frac12-\frac12\cos2t\right)\,\mathbf k
User Mikek
by
8.1k points

No related questions found