146k views
0 votes
What is the following sum in simplest form? sqrt 8 + 3 sqrt2 + sqrt 32
\

User Covi
by
8.5k points

2 Answers

1 vote

√(8) +3 √(2)+ √(32) =\\\\ √(4*2)+3 √(2)+ √(16*2)=\\\\2 √(2)+3 √(2)+4 √(2)=\\\\ \boxed{9 √(2) }
User Michael Krupp
by
8.0k points
5 votes

Answer:-
√(8)+3 √(2)+ √(32)=9√(2) in the simplest form.


Explanation:-

Given sum :-
√(8)+3 √(2)+ √(32)

To simplify, rewrite the numbers inside the root in the product of primes, we get


\Rightarrow√(2*2*2)+3 √(2)+ √(2*2*2*2*2)\\\\\Rightarrow√(2^2*2)+3 √(2)+ √(4*4*2)\\\\\Rightarrow√(2^2)√(2)+3 √(2)+ √(4^2*2)\\\\\Rightarrow2√(2)+3√(2)+√(4^2)√(2)\\\\\Rightarrow2√(2)+3√(2)+4√(2)=9√(2)

Thus
√(8)+3 √(2)+ √(32)=9√(2) in the simplest form.

User Shuvo
by
8.3k points