Final answer:
The acceleration of a 300,000-kg jumbo jet with a thrust force of 120,000 N is calculated using Newton's second law of motion to be 0.4 m/s².
Step-by-step explanation:
The student has asked a Physics question related to calculating the acceleration of an object given its mass and the force applied to it. The subject of this question falls under Newton's second law of motion, which states that the acceleration (a) of an object is directly proportional to the net force (F) acting on it and inversely proportional to its mass (m), which can be represented by the equation a = F / m.
In the case of the jumbo jet with a mass of 300,000 kg experiencing a thrust force of 120,000 N, we can find the acceleration of the jet by using Newton's second law:
a = F / m = 120,000 N / 300,000 kg = 0.4 m/s²
The acceleration of the jumbo jet is 0.4 m/s² just before takeoff.