Final answer:
The mass of carbon dioxide produced in the combustion reaction of ethanol with oxygen, given that 54.0 g of water is produced, is 88.0 g.
Step-by-step explanation:
In a combustion reaction of ethanol (C₂H₅OH), which reacts with oxygen (O₂) to produce water (H₂O) and carbon dioxide (CO₂), the mass of carbon dioxide produced can be calculated using the law of conservation of mass. The balanced chemical equation for the combustion of ethanol is:
C₂H₅OH (l) + 3O₂ (g) → 2CO₂ (g) + 3H₂O (g)
Given 46.0 g of ethanol reacts with 96.0 g of oxygen, and 54.0 g of water is produced, we can deduce the mass of carbon dioxide. By the conservation of mass, the total mass of reactants must be equal to the total mass of products:
Mass of reactants = Mass of products
46.0 g (ethanol) + 96.0 g (oxygen) = Mass of water + Mass of carbon dioxide
142.0 g (total reactants) = 54.0 g (water) + Mass of carbon dioxide
Mass of carbon dioxide = 142.0 g - 54.0 g = 88.0 g of CO₂
Therefore, the mass of carbon dioxide produced in this reaction is 88.0 g.